65 research outputs found

    Topology independent protein structural alignment

    Get PDF
    Abstract. Protein structural alignment is an indispensable tool used for many different studies in bioinformatics. Most structural alignment algorithms assume that the structural units of two similar proteins will align sequentially. This assumption may not be true for all similar proteins and as a result, proteins with similar structure but with permuted sequence arrangement are often missed. We present a solution to the problem based on an approximation algorithm that finds a sequenceorder independent structural alignment that is close to optimal. We first exhaustively fragment two proteins and calculate a novel similarity score between all possible aligned fragment pairs. We treat each aligned fragment pair as a vertex on a graph. Vertices are connected by an edge if there are intra residue sequence conflicts. We regard the realignment of the fragment pairs as a special case of the maximum-weight independent set problem and solve this computationally intensive problem approximately by iteratively solving relaxations of an appropriate integer programming formulation. The resulting structural alignment is sequence order independent. Our method is insensitive to gaps, insertions/deletions, and circular permutations.

    FLORA: a novel method to predict protein function from structure in diverse superfamilies

    Get PDF
    Predicting protein function from structure remains an active area of interest, particularly for the structural genomics initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although global structure comparison methods can be used to transfer functional annotations, the relationship between fold and function is complex, particularly in functionally diverse superfamilies that have evolved through different secondary structure embellishments to a common structural core. The majority of prediction algorithms employ local templates built on known or predicted functional residues. Here, we present a novel method (FLORA) that automatically generates structural motifs associated with different functional sub-families (FSGs) within functionally diverse domain superfamilies. Templates are created purely on the basis of their specificity for a given FSG, and the method makes no prior prediction of functional sites, nor assumes specific physico-chemical properties of residues. FLORA is able to accurately discriminate between homologous domains with different functions and substantially outperforms (a 2–3 fold increase in coverage at low error rates) popular structure comparison methods and a leading function prediction method. We benchmark FLORA on a large data set of enzyme superfamilies from all three major protein classes (α, β, αβ) and demonstrate the functional relevance of the motifs it identifies. We also provide novel predictions of enzymatic activity for a large number of structures solved by the Protein Structure Initiative. Overall, we show that FLORA is able to effectively detect functionally similar protein domain structures by purely using patterns of structural conservation of all residues

    Ligand binding site superposition and comparison based on Atomic Property Fields: identification of distant homologues, convergent evolution and PDB-wide clustering of binding sites

    Get PDF
    A new binding site comparison algorithm using optimal superposition of the continuous pharmacophoric property distributions is reported. The method demonstrates high sensitivity in discovering both, distantly homologous and convergent binding sites. Good quality of superposition is also observed on multiple examples. Using the new approach, a measure of site similarity is derived and applied to clustering of ligand binding pockets in PDB

    Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties

    Get PDF
    BACKGROUND: The number of protein sequences deriving from genome sequencing projects is outpacing our knowledge about the function of these proteins. With the gap between experimentally characterized and uncharacterized proteins continuing to widen, it is necessary to develop new computational methods and tools for functional prediction. Knowledge of catalytic sites provides a valuable insight into protein function. Although many computational methods have been developed to predict catalytic residues and active sites, their accuracy remains low, with a significant number of false positives. In this paper, we present a novel method for the prediction of catalytic sites, using a carefully selected, supervised machine learning algorithm coupled with an optimal discriminative set of protein sequence conservation and structural properties. RESULTS: To determine the best machine learning algorithm, 26 classifiers in the WEKA software package were compared using a benchmarking dataset of 79 enzymes with 254 catalytic residues in a 10-fold cross-validation analysis. Each residue of the dataset was represented by a set of 24 residue properties previously shown to be of functional relevance, as well as a label {+1/-1} to indicate catalytic/non-catalytic residue. The best-performing algorithm was the Sequential Minimal Optimization (SMO) algorithm, which is a Support Vector Machine (SVM). The Wrapper Subset Selection algorithm further selected seven of the 24 attributes as an optimal subset of residue properties, with sequence conservation, catalytic propensities of amino acids, and relative position on protein surface being the most important features. CONCLUSION: The SMO algorithm with 7 selected attributes correctly predicted 228 of the 254 catalytic residues, with an overall predictive accuracy of more than 86%. Missing only 10.2% of the catalytic residues, the method captures the fundamental features of catalytic residues and can be used as a "catalytic residue filter" to facilitate experimental identification of catalytic residues for proteins with known structure but unknown function

    Partial Order Optimum Likelihood (POOL): Maximum Likelihood Prediction of Protein Active Site Residues Using 3D Structure and Sequence Properties

    Get PDF
    A new monotonicity-constrained maximum likelihood approach, called Partial Order Optimum Likelihood (POOL), is presented and applied to the problem of functional site prediction in protein 3D structures, an important current challenge in genomics. The input consists of electrostatic and geometric properties derived from the 3D structure of the query protein alone. Sequence-based conservation information, where available, may also be incorporated. Electrostatics features from THEMATICS are combined with multidimensional isotonic regression to form maximum likelihood estimates of probabilities that specific residues belong to an active site. This allows likelihood ranking of all ionizable residues in a given protein based on THEMATICS features. The corresponding ROC curves and statistical significance tests demonstrate that this method outperforms prior THEMATICS-based methods, which in turn have been shown previously to outperform other 3D-structure-based methods for identifying active site residues. Then it is shown that the addition of one simple geometric property, the size rank of the cleft in which a given residue is contained, yields improved performance. Extension of the method to include predictions of non-ionizable residues is achieved through the introduction of environment variables. This extension results in even better performance than THEMATICS alone and constitutes to date the best functional site predictor based on 3D structure only, achieving nearly the same level of performance as methods that use both 3D structure and sequence alignment data. Finally, the method also easily incorporates such sequence alignment data, and when this information is included, the resulting method is shown to outperform the best current methods using any combination of sequence alignments and 3D structures. Included is an analysis demonstrating that when THEMATICS features, cleft size rank, and alignment-based conservation scores are used individually or in combination THEMATICS features represent the single most important component of such classifiers

    Accuracy of Protein-Protein Binding Sites in High-Throughput Template-Based Modeling

    Get PDF
    The accuracy of protein structures, particularly their binding sites, is essential for the success of modeling protein complexes. Computationally inexpensive methodology is required for genome-wide modeling of such structures. For systematic evaluation of potential accuracy in high-throughput modeling of binding sites, a statistical analysis of target-template sequence alignments was performed for a representative set of protein complexes. For most of the complexes, alignments containing all residues of the interface were found. The full interface alignments were obtained even in the case of poor alignments where a relatively small part of the target sequence (as low as 40%) aligned to the template sequence, with a low overall alignment identity (<30%). Although such poor overall alignments might be considered inadequate for modeling of whole proteins, the alignment of the interfaces was strong enough for docking. In the set of homology models built on these alignments, one third of those ranked 1 by a simple sequence identity criteria had RMSD<5 Å, the accuracy suitable for low-resolution template free docking. Such models corresponded to multi-domain target proteins, whereas for single-domain proteins the best models had 5 Å<RMSD<10 Å, the accuracy suitable for less sensitive structure-alignment methods. Overall, ∼50% of complexes with the interfaces modeled by high-throughput techniques had accuracy suitable for meaningful docking experiments. This percentage will grow with the increasing availability of co-crystallized protein-protein complexes

    BSSF: a fingerprint based ultrafast binding site similarity search and function analysis server

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome sequencing and post-genomics projects such as structural genomics are extending the frontier of the study of sequence-structure-function relationship of genes and their products. Although many sequence/structure-based methods have been devised with the aim of deciphering this delicate relationship, there still remain large gaps in this fundamental problem, which continuously drives researchers to develop novel methods to extract relevant information from sequences and structures and to infer the functions of newly identified genes by genomics technology.</p> <p>Results</p> <p>Here we present an ultrafast method, named BSSF(Binding Site Similarity & Function), which enables researchers to conduct similarity searches in a comprehensive three-dimensional binding site database extracted from PDB structures. This method utilizes a fingerprint representation of the binding site and a validated statistical Z-score function scheme to judge the similarity between the query and database items, even if their similarities are only constrained in a sub-pocket. This fingerprint based similarity measurement was also validated on a known binding site dataset by comparing with geometric hashing, which is a standard 3D similarity method. The comparison clearly demonstrated the utility of this ultrafast method. After conducting the database searching, the hit list is further analyzed to provide basic statistical information about the occurrences of Gene Ontology terms and Enzyme Commission numbers, which may benefit researchers by helping them to design further experiments to study the query proteins.</p> <p>Conclusions</p> <p>This ultrafast web-based system will not only help researchers interested in drug design and structural genomics to identify similar binding sites, but also assist them by providing further analysis of hit list from database searching.</p

    BSSF: a fingerprint based ultrafast binding site similarity search and function analysis server

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome sequencing and post-genomics projects such as structural genomics are extending the frontier of the study of sequence-structure-function relationship of genes and their products. Although many sequence/structure-based methods have been devised with the aim of deciphering this delicate relationship, there still remain large gaps in this fundamental problem, which continuously drives researchers to develop novel methods to extract relevant information from sequences and structures and to infer the functions of newly identified genes by genomics technology.</p> <p>Results</p> <p>Here we present an ultrafast method, named BSSF(Binding Site Similarity & Function), which enables researchers to conduct similarity searches in a comprehensive three-dimensional binding site database extracted from PDB structures. This method utilizes a fingerprint representation of the binding site and a validated statistical Z-score function scheme to judge the similarity between the query and database items, even if their similarities are only constrained in a sub-pocket. This fingerprint based similarity measurement was also validated on a known binding site dataset by comparing with geometric hashing, which is a standard 3D similarity method. The comparison clearly demonstrated the utility of this ultrafast method. After conducting the database searching, the hit list is further analyzed to provide basic statistical information about the occurrences of Gene Ontology terms and Enzyme Commission numbers, which may benefit researchers by helping them to design further experiments to study the query proteins.</p> <p>Conclusions</p> <p>This ultrafast web-based system will not only help researchers interested in drug design and structural genomics to identify similar binding sites, but also assist them by providing further analysis of hit list from database searching.</p

    VASP: A Volumetric Analysis of Surface Properties Yields Insights into Protein-Ligand Binding Specificity

    Get PDF
    Many algorithms that compare protein structures can reveal similarities that suggest related biological functions, even at great evolutionary distances. Proteins with related function often exhibit differences in binding specificity, but few algorithms identify structural variations that effect specificity. To address this problem, we describe the Volumetric Analysis of Surface Properties (VASP), a novel volumetric analysis tool for the comparison of binding sites in aligned protein structures. VASP uses solid volumes to represent protein shape and the shape of surface cavities, clefts and tunnels that are defined with other methods. Our approach, inspired by techniques from constructive solid geometry, enables the isolation of volumetrically conserved and variable regions within three dimensionally superposed volumes. We applied VASP to compute a comparative volumetric analysis of the ligand binding sites formed by members of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains and the serine proteases. Within both families, VASP isolated individual amino acids that create structural differences between ligand binding cavities that are known to influence differences in binding specificity. Also, VASP isolated cavity subregions that differ between ligand binding cavities which are essential for differences in binding specificity. As such, VASP should prove a valuable tool in the study of protein-ligand binding specificity
    corecore